THE INTERTIDAL ZONE AND **BENTHIC ORGANISMS**

OUTLINE

Intertidal zonation

Tides

١.

- Biotic zonation
- Physical conditions & biotic interactions

Intertidal organisms & adaptations Snails Mussels 11.

- Limpets & Chitons
- Crabs
- Anemones
- Echinoderms & Echinoids

Marine macroalgae (seaweeds) Green Brown 111.

- Red

TIDES

"Intertidal" describes the region of the shore that lies between the *highest high tide* and the *lowest low tide*.

BIOTIC ZONATION

• Organism distribution controlled by:

Physical conditions -determines upper limit of organisms in each Zone

-"You can't live outside of your environment"

Biological interactions _Determines lower limit of organisms in each Zone

-"You won' t last long where your predator lives"

ROCKY INTERTIDAL BIOTIC ZONATION (TYPICAL ALONG CALIFORNIA COAST)

Algae and other encrusting organisms are indicators of biotic zonation.

PHYSICAL CONDITIONS

- Waves
 - bring nutrients & moisture
 - can detach organisms from substrate
- Exposure time
 - tissues will not function if desiccated
- Heat & cold
 - temperature changes more extreme above water
- Substrate
 - support very different communities with varying diversity and abundance
- Available space
 - organisms need a place to live

BIOLOGICAL INTERACTIONS

- Predation
 - terrestrial predators
 - sea stars eat mussels
 - sea otters eat sea urchins
 - sea urchins eat kelp
- Competition

 seawater brings nutrients to organisms, so space is the most contested resource

 Some organisms live on top of other organisms (encrusting)

- Adaptation
 - Physiological and morphological ways to deal with physical challenges

COMMON INTERTIDAL ORGANISMS AND THEIR ADAPTATIONS

PERIWINKLE SNAILS

Larger shell volume allows more water storage.

This adaptation allows some species to resist desiccation longer, allowing survival much higher in the Upper Intertidal Zone.

Crabs store water in gill chambers and can move to concealed areas or into the water if necessary.

MACROALGAE (SEAWEED)

- Macroalgae are:
 - Photoautotrophic
 - Aquatic
 - Eukaryotes
 - Unicellular or
 - Multicellular
- Macroalgae are NOT:

PLANTS (they do not have specialized tissues)
i.e. (blade ≠ leaf), (stipe ≠ trunk), (holdfast ≠ roots)

GREEN ALGAE (CHLOROPHYTA)

- Green algae ancestor gave rise to terrestrial plants
- Closest relation to terrestrial plants
- Cell walls made of cellulose (like terrestrial plants)
- Can overgrow and kill coral reefs

BROWN ALGAE (PHAEOPHYTA)

- Largest of all algal species (giant kelp can grow to hundreds of feet)
- Structurally most complex of all seaweeds
- Largest component of "kelp forests" (contain ~800 distinct species)

RED ALGAE (RHODOPHYTA)

- Able to inhabit deep water environments
 - better at absorbing blue light, which penetrates deeper than other wavelengths
- "Coralline" species secrete CaCO₃ "skeletons"
- In coral reefs, red algae contribute more CaCO₃ than corals
- Some encrust other algae

